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The objective of this talk is to understand what properties a function
I : [

∏n
i=1 Xi ]× [

∏n
i=1 Xi ] → R that can be used as an independence test by an

“integration method”, that is∫
∏n

i=1 Xi

∫
∏n

i=1 Xi

I(x , y)d [P −⊗n
i=1Pi ](x)d [P −⊗n

i=1Pi ](y) > 0

whenever P ̸= ⊗n
i=1Pi , must have.

We will see that is convenient and in several scenarios equivalent to analyze this property
on a larger set, more specifically when P and Q have the same marginals∫

∏n
i=1 Xi

∫
∏n

i=1 Xi

I(x , y)d [P − Q](x)d [P − Q](y) > 0

whenever P ̸= Q.
One of the reasons is that by Hahn-Jordan decomposition the set
{M[P − Q],M ≥ 0,P,Q have the same marginals} is the vector space of finite measures
such that µ(⊗n

i=1Ai ) = 0 whenever |{i | Ai = Xi}| = n − 1.
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Introduction: PD kernels

• A kernel K : X × X → R is called Positive Definite (PD) if it is symmetric and for
whichever finite quantity of points x1, . . . , xn ∈ X and scalars c1, . . . , cn ∈ R

n∑
i,j=1

cicjK(xi , xj) ≥ 0.

(Kernel mean Embedding) If K is continuous, µ ∈ M(X ) is a finite Radon measure and√
K(x , x) ∈ L1(|µ|), then

y → Kµ(y) :=

∫
X

K(x , y)dµ(x) is an element of HK

and if ν is another measure that satisfies the same conditions

⟨Kµ,Kν⟩HK =

∫
X

∫
X

K(x , y)dµ(x)dν(y).
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Introduction: PD kernels

If K is bounded and µ ∈ M(X ) → HK is injective we say that K is Integrally Strictly
Positive Definite (ISPD). (In particular we obtain an inner product in M(X ))

If K is bounded and injective in the subspace M0(X ) := {µ ∈ M(X ), µ(X ) = 0}, we say
that K is Characteristic. (In particular we obtain an injective embedding of P(X ) to a
Hilbert space)

By the Hahn-Jordan decomposition, K is Characteristic if and only if∫
X

∫
X

K(x , y)d [P − Q](x)d [P − Q](y) ≥ 0, P,Q ∈ P(X )

and it is zero only when P = Q. Examples for ISPD include the Gaussian kernel in any
Hilbert space and the majority in the Gneiting Class1.

1J. C. Guella, On Gaussian kernels on Hilbert spaces and kernels on Hyperbolic spaces, JAT (2022)
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Introduction: CND kernels

• A kernel γ : X × X → R is called Conditionally Negative Definite (CND) if it is
symmetric and for whichever finite quantity of points x1, . . . , xn ∈ X and scalars
c1, . . . , cn ∈ R, restricted to

∑n
i=1 ci = 0, we have that

n∑
i,j=1

cicjγ(xi , xj) ≤ 0.

There is a strong connection between CND and PD kernels:

Theorem: A symmetric kernel γ : X × X → R is CND if and only if for any (or
equivalently for every) z ∈ X the kernel

Kγ(x , y) := γ(x , z) + γ(z , y)− γ(x , y)− γ(z , z) is PD, and

2γ(x , y)− γ(x , x)− γ(y , y) = ∥Kγ
x − Kγ

y ∥2HK
.

Kγ(x , y) =

∫
X

∫
X

γ(u, v)d [δx − δz ](u)d [δy − δz ](v)
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Introduction: CND kernels

By the previous relation, if γ is continuous, bounded at the diagonal and µ ∈ M0(X ) is
such that γ ∈ L1(|µ| × |µ|) (the last relation is equivalent to γ(·, z) ∈ L1(|µ|) for every
z ∈ X ), then∫

X

∫
X

−γ(x , y)dµ(x)dµ(y) =
∫
X

∫
X

Kγ(x , y)dµ(x)dµ(y) ≥ 0.

Similar to the definition of Characteristic kernels, if the previous inequality is zero only
when µ is the zero measure we say that γ is CND-Characteristic (also “Strong negative
type”).
Examples include the Brownian kernel in any Hilbert space and the metric in
real/complex hyperbolic spaces of any dimension. 2

2J. C. Guella, Generalization of the energy distance by Bernstein functions, J Theo. Prob. (2022)
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Introduction: The Brownian kernel is CND-Characteristic

Since

−t1/2 =
1

2
√
π

∫
(0,∞)

(e−rt − 1)
dr

r 3/2
, t ≥ 0

we can prove that ∥x − y∥ is CND.

If µ ∈ M(H), µ(H) = 0 and ∥ · ∥ ∈ L1(|µ|)

∫
H

∫
H

−∥x − y∥dµ(x)dµ(y) =
∫
H

∫
H

[
1

2
√
π

∫
(0,∞)

(e−r∥x−y∥2 − 1)
dr

r3/2

]
dµ(x)dµ(y)

=
1

2
√
π

∫
(0,∞)

[∫
H

∫
H

e−r∥x−y∥2dµ(x)dµ(y)

]
dr

r3/2
≥ 0.
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Introduction: Distance covariance and HSIC

It is possible to use the concepts of ISPD and CND-Characteristic kernels in order to
obtain independence tests. Let P be a probability in H×H′ and its marginals P1,P2,
then ∫

H×H′

∫
H×H′

e−∥x−y∥2e−∥z−w∥2d [P − P1 ⊗ P2](x , z)d [P − P1 ⊗ P2](y ,w) = 0

∫
H×H′

∫
H×H′

∥x − y∥∥z − w∥d [P − P1 ⊗ P2](x , z)d [P − P1 ⊗ P2](y ,w) = 30

if and only if P = P1 ⊗ P2.
The first case is usually called Hilbert Schmidt Independence Criterion (HSIC) and the
second case is called Distance Covariance (Dcov).

3under first moment assumptions

8 / 20



Introduction: Distance covariance and HSIC 4

Let I1 : X1 × X1 → R and I2 : X2 × X2 → R be continuous symmetric kernels (+
reasonable integrability assumptions). Then

1 For any probability P in M(X1 × X2) such that P ̸= ⊗Pi∫
X1×X2

∫
X1×X2

I1(x1, y1)I2(x2, y2)d [P −⊗Pi ](x)d [P −⊗Pi ](y) > 0.

2 For any distinct probabilities P,Q in M(X1 × X2) with the same marginals∫
X1×X2

∫
X1×X2

I1(x1, y1)I2(x2, y2)d [P − Q](x)d [P − Q](y) > 0.

3 The kernels I1 and I2 are CND-Characteristic (up to sign change).

4J.C. Guella, Generalization of the HSIC and distance covariance using positive definite independent kernels
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Limitations of Distance covariance and HSIC in several dimensions (n ≥ 3)

Let Ii : Xi × Xi → R, 1 ≤ i ≤ n, be continuous symmetric kernels . Then (+ reasonable
integrability assumptions)

1 For any probability P in M(Xn) such that P ̸= ⊗Pi∫
Xn

∫
Xn

n∏
i=1

Ii (xi , yi )d [P −⊗Pi ](x)d [P −⊗Pi ](y) > 0

2 For any distinct probabilities P,Q in M(Xn) with the same marginals∫
Xn

∫
Xn

n∏
i=1

Ii (xi , yi )d [P − Q](x)d [P − Q](y) > 0

3 All the kernels Ii are PD and ISPD (up to sign change).

The highly important trick which is heavily used in the radial case is that
⊗n

i=1µi = M[P −⊗n
i=1Pi ] whenever for at least two terms µi (Xi ) = 0.

10 / 20



(In progress) Positive definite independent of order 2 (PDI2) kernels

Let M1(Xn) := {µ ∈ M(Xn), µ(⊗n
i=1Ai ) = 0 whenever |{i | Ai = Xi}| = n − 1}

Definition

A kernel I : Xn ×Xn → R is called Positive definite independent of order 2 (PDI2) if it is
n-symmetric and for any discrete measure µ ∈ M1(Xn)∫

Xn

∫
Xn

I(x , y)dµ(x)dµ(y) ≥ 0.

If n = 2, the geometry of those kernels are a “generalization” of tensor product of Hilbert
spaces (x⃗0 = (x0

1 , x
0
2 ) ∈ X1 × X2 is fixed).

KI(x⃗1, x⃗2) =

∫
X1×X2

∫
X1×X2

I(u, v)d [(δx11
−δx01 )⊗(δx12

−δx01 )](u)d [(δx21 −δx01 )⊗(δx22
−δx02 )](v)

4I((x1
1 , x

1
2 ), (x

2
1 , x

2
2 ))− 8 terms = ∥KI

(x11 ,x
1
2 )
+ KI

(x21 ,x
2
2 )
− KI

(x11 ,x
2
2 )
− KI

x21 ,x
1
2 )
∥2H

KI

If n ≥ 3, (especially if n ≥ 5), they are much more difficult to understand. KI is related
to δx⃗

1
−
∑n

i=1 δxei + (n − 1)δx⃗
0
, the reverse equation has

∑n
k=2

(
n
k

)
2n−k at the right side.

However, radial PDI kernels in all dimensions (that is, generalizations of the famous
Schoenberg‘s results) are more well behaved.
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(In progress) Limitations of Distance covariance in several dimensions
(n ≥ 3)

Let F 1, . . . ,F ℓ be a disjoint family of subsets of {1, . . . , n} whose union is the entire set,
where ℓ ≥ 2 and |F k |-symmetric kernels Ik : XF k ×XF k → R, 1 ≤ k ≤ ℓ (+ reasonable
technical conditions). Then the kernel

I(x⃗1, x⃗2) :=
ℓ∏

k=1

Ik(x⃗1(F k ), x⃗2(F k ))

is PDI2 if and only if one of the following conditions is satisfied (up to sign change)

(i) ℓ = 2 and |F 1| = 1: I1 is PD and −I2 is CND.

(ii) All kernels Ii are PD.

12 / 20



Multivariate Radial PD kernels

Theorem

Let g : [0,∞)n → R be a continuous function. The following conditions are equivalent:

(i) The kernel g(∥x1 − y1∥2, . . . , ∥xn − yn∥2), xi , yi ∈ Rd is PD for every d ∈ N.
(ii) The function can be represented as

g(t) =

∫
[0,∞)n

e−r·tdη(r1, . . . , rn)

where the measure η ∈ M([0,∞)n) is nonnegative. Further, the representation is
unique.

(iii) The function g is completely monotone in (0,∞)n, that is g ∈ C∞((0,∞)n) and
(−1)|α|[∂αg ](t) ≥ 0 for any α ∈ (Z+)

n and t ∈ (0,∞)n.

ISPD if and only if η((0,∞)n) > 0.
Equivalence between ii and iii:”Harmonic Analysis and the Theory of Probability, Bochner
1955“.

13 / 20



(In progress) Multivariate Radial CND kernels

Theorem

Let g : [0,∞)n → R be a continuous function such that g(0) = 0. The following
conditions are equivalent:

(i) The kernel g(∥x1 − y1∥2, . . . , ∥xn − yn∥2), xi , yi ∈ Rd is CND for every d ∈ N.
(ii) The function can be represented as

g(t) =
n∑

i=1

ai ti +

∫
[0,∞)n\{0}

(1− e−r·t)
1 +

∑n
i=1 ri∑n

i=1 ri
dη(r1, . . . , rn)

where the measure η ∈ M([0,∞)n) and the scalars ai are nonnegative. Further, the
representation is unique.

(iii) The function g is a Bernstein function of order 1 in (0,∞)n, that is
g ∈ C∞((0,∞)n) and ∂ei g is completely monotone for every 1 ≤ i ≤ n.

Equivalence between ii and iii:“Properties of Bernstein Functions of Several Complex
Variables A. R. Mirotin, 2013”.
CND-Characteristic if and only if η((0,∞)n) > 0.

14 / 20



(In progress) Multivariate Radial PDI2 kernels

We use the elementary symmetric polynomials

pn
2(r1, . . . , rn) :=

∑
1≤i<j≤n

ri rj , pn
1(r1, . . . , rn) =

∑
1≤i≤n

ri .

The zeroes of pn
2 in the set [0,∞)n is the set

∂n
1 :=

⋃
F⊂{1,...,n},|F |=1

{λiei , λi ≥ 0, 1 ≤ i ≤ n}

15 / 20



(In progress) Multivariate Radial PDI2 kernels

Theorem

Let n ≥ 2 and g : [0,∞)n → R be a continuous function that is zero in ∂n
1 . The following

conditions are equivalent:

(i) For any d ∈ N and discrete probability P in (Rd)n, with marginals Pi in Rd , it holds
that ∫

(Rd )n

∫
(Rd )n

g(∥x1 − y1∥2, . . . , ∥xn − yn∥2)d [P −⊗n
i=1Pi ](x)d [P −⊗n

i=1Pi ](y) ≥ 0.

(ii) The kernel g(∥x1 − y1∥2, . . . , ∥xn − yn∥2), xi , yi ∈ Rd is PDI2 for every d ∈ N.
(iii) The function can be represented as

g(t) =
∑
i ̸=j

tiψ
i,j(tj) +

∑
i<j

ai,j ti tj +

∫
[0,∞)n\∂n

1

(
e−r·t −

n∑
i=1

e−ri ti + n − 1

)
1 + pn

1(r) + pn
2(r)

pn
2(r)

dη(r)

where the measure η ∈ M([0,∞)n \ ∂n
1 ) and the scalars ai,j are nonnegative and the

functions ψi,j are Bernstein. Further, the representation is unique.

(iv) The function g(t) is a Bernstein function of order 2 in (0,∞)n, that is
g ∈ C∞((0,∞)n) and ∂ei+ej g is completely monotone for every 1 ≤ i < j ≤ n.

PDI2-Characteristic if and only if η((0,∞)n) > 0.
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Distance Multivariance

Related to recent works of Bjorn Bottcher, Martin Keller-Ressel and Rene L. Schilling.

Let Ii : Xi × Xi → R, 1 ≤ i ≤ n, be continuous symmetric kernels. Then (+ reasonable
integrability assumptions)

1 For any probability P in M(Xn) such that ∆n
SP ̸= 0 (Streitberg interaction)∫

Xn

∫
Xn

n∏
i=1

Ii (xi , yi )d [∆
n
SP](x)d [∆

n
SP](y) > 0.

Similarly for the Lancaster interaction.

2 For any distinct probabilities P,Q in M(Xn) with the same “complemented”
marginals (P(⊗n

i=1Ai ) = Q(⊗n
i=1Ai ) whenever |{i | Ai = Xi}| ≥ 1)∫

Xn

∫
Xn

n∏
i=1

Ii (xi , yi )d [P − Q](x)d [P − Q](y) > 0.

3 All the kernels Ii are CND-Characteristic (up to sign change).

This result leads to a new type o kernel (Positive definite independent of order n, PDIn),
which has an easier mathemathical structure (generalization of an n-tensor product).
Intermediate cases between PDI2 and PDIn are possible to analyse, but its difficult to
handle the combinatorial burden of its terminology.
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Distance Multivariance

Related to recent works of Bjorn Bottcher, Martin Keller-Ressel and Rene L. Schilling.

Let Ii : Xi × Xi → R, 1 ≤ i ≤ n, be continuous symmetric kernels. Then (+ reasonable
integrability assumptions)

1 For any probability P in M(Xn) such that ∆n
SP ̸= 0 (Streitberg interaction)∫

Xn

∫
Xn

n∏
i=1

Ii (xi , yi )d [∆
n
SP](x)d [∆

n
SP](y) > 0.

Similarly for the Lancaster interaction.
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(In progress) Positive definite independent of order n (PDIn) kernels

Let
Mn−1(Xn) := {µ ∈ M(Xn), µ(⊗n

i=1Ai ) = 0 whenever |{i | Ai = Xi}| = 1} ⊂ M1(Xn)

Definition

A kernel I : Xn ×Xn → R is called Positive definite independent of order n (PDIn) if it is
n-symmetric and for any discrete measure µ ∈ Mn(Xn)

(−1)n
∫
Xn

∫
Xn

I(x , y)dµ(x)dµ(y) ≥ 0.

KI(x⃗1, x⃗2) =

∫
Xn

∫
Xn

(−1)nI(u, v)d [⊗n
i=1(δx1i

− δx0i
)](u)d [⊗n

i=1(δx2i
− δx0i

)](v)

2nI(x⃗1, x⃗2)− huge amount of terms = ∥
∑
α∈Nn

2

(−1)|α|KI
xα∥

2
H

KI
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(In progress) Multivariate Radial PDIn kernels

Theorem

Let g : [0,∞)n → R be a continuous function such that g is zero at the border of
[0,∞)n. The following conditions are equivalent:

(i) The kernel g(∥x1 − y1∥2, . . . , ∥xn − yn∥2), xi , yi ∈ Rd is PDIn for every d ∈ N.
(ii) The function can be represented as

g(t) =

∫
[0,∞)n

[
n∏

i=1

(1− e−ri ti )

] ∏n
i=1(1 + ri )∏n

i=1 ri
dη(r1, . . . , rn)

where the measure η ∈ M([0,∞)n) is nonnegative. Further, the representation is
unique.

(iii) The function g is a Bernstein function of order n in (0,∞)n, that is

g ∈ C∞((0,∞)n) and ∂ 1⃗g is completely monotone.

PDIn-Characteristic if and only if η((0,∞)n) > 0.
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Thank you!
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